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 Section 1: Derivation of the cross-spectral density function of a cosine-Gaussian correlated Schell-model
beam propagating through an ABCD optical system
In this section, we derive the cross-spectral density (CSD) function of a cosine-Gaussian correlated Schell-model (CGC-
SM) beam with a cross phase (CP), propagating in a paraxial ABCD optical system, and obtain the condition of the re-
covery of the modulus of degree of coherence (DOC) function in the far field. The CSD function of such beam in the
source plane is expressed as
 

W0 (r1, r2) = exp
(
− r21 + r22

4ω0
2

)
μ0(Δr)exp [iu (x1y1 − x2y2)] , (S1)

where u is the strength factor. ω0 denotes the beam width. ri = (xi, yi), (i=1,2) are two arbitrary position vectors in the
source plane. The function μ0(∆r) denotes the DOC, given by
 

μ0(Δr) = cos
(
n
√
2πΔx
δ0

)
cos

(
n
√
2πΔy
δ0

)
exp

(
−Δr2

2δ20

)
. (S2)

n and δ0 in Eq. S2 are the beam order and transverse coherence width, respectively. ∆r = r1−r2 = (∆x, ∆y) is the differ-
ence of two position vectors.

Within the accuracy of paraxial approximation, the propagation of the CSD function in a paraxial ABCD optical sys-
tem can be treated by the extended Collins integral:
 

W (ρ1, ρ2) =
k2

4π2B2 exp
[
− ikD

2B
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]w w ∞
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]
exp
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]
d2r1d2r2 ,

(S3)
where A, B and D are the elements of the transfer matrix of an optical system, k is the wavenumber, ρi=(ρix, ρiy),(i=1,2)
are two arbitrary position vectors in the receiver plane.

Then,  we  insert Eq.  S2 into Eq.  S1 then  into Eq.  S3,  and  introduce  the  following  “sum ”  and  “difference ”
coordinates,and introduce the following “sum” and “difference” coordinates,
 

rs = (r1 + r2) /2 , Δr = r1 − r2 ,
ρs = (ρ1 + ρ2) /2 , Δρ = ρ1 − ρ2 . (S4)

After tedious but straightforward integrating, we obtain the expression for the CSD function in the receiver plane
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with
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1
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0
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0/B2)
,M = (Ω2 + ω2

0u2 + A2k2ω2
0/B2) (1− h2) ,

a =
n
√
2π

δ0
, ραβ = iρsα +

Aω2
0k
B

Δρα − uω2
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Equation S5 is  too rather complicated to obtain the closed form of the DOC during propagation.  Let us consider a
typical focusing system: a lens with focal length f is inserted into the source plane, and the receiver plane is at the dis-
tance z after the Lens. In this case, the elements of the transfer matrix are
  ( A B

C D

)
=

( 1 z
0 1

)( 1 0
−1/f 1

)
=

(
1− z/f z
−1/f 1

)
. (S7)

If the receiver plane is just in the rear focal plane of the lens, i.e., A=0, B=f, and D=1, the CSD function is then simpli-
fied as
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M0 = Ω2 + ω2
0u2where  and ∆ρ = ρ1 – ρ2 = (∆ρx, ∆ρy).

By applying the following relation 

cos(a±b) = cosacosb∓ sinasinb , (S9)
the last three terms in Eq. S8 are expanded as 
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(S10)
α = a

√
2/M0with .

α ≪ 1In Eq. S10, we assume that the condition (a), i.e.,  is satisfied, implying that the cosh function and sinh function
in Eq. S10 are about 1 and 0, respectively, in the range of the Gaussian function with increasing value. Under this cir-
cumstance, Eq. S10 reduces to 

exp
(
− k2

2f2M0
ρ2s
)
cos

[
ak
fM0

(
iρsx − uω2

0Δρy
)]

cos
[
ak
fM0

(
iρsy − uω2

0Δρx
)]

≈ exp

[
−
(

kρsx
f
√
2M0

)2
]
exp

[
−
( kρsy
f
√
2M0

)2]
cos

(
uω2

0ak
fM0

Δρy

)
cos

(
uω2

0ak
fM0

Δρx

)
. (S11)

Hence Eq. S8 reduces 
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with the condition (a), we derive 

a
√
2/M0 ≪ 1 , (S13)

namely, 

u >

√
200a2 − Ω2

ω0
. (S14)

According to the definition of the DOC, the modulus of the DOC in the focal plane takes the form  ∣∣∣μf (ρ1 − ρ2)
∣∣∣ = |W(ρ1, ρ2)|√

W(ρ1, ρ1)W(ρ2, ρ2)

=

∣∣∣∣∣exp
[
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with 

uf =
ω2
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f2M0
u , (S16)

 

ωf =
f
k
√
M0 , (S17)

 

δf =
fδ0
kω0

√
M0 . (S18)

The uf, ωf, and δf are the CP strength factor, beam width, and coherence width in the focal plane, respectively.√
M0/ω2

0u2 → 1Now we assume the condition (b) , namely. 

u >
√
10Ω/ω0 . (S19)

The DOC described by Eq. S15 reduces to  ∣∣∣μf (ρ1 − ρ2)
∣∣∣ = ∣∣∣∣∣exp
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with δf = (fu/k) δ0. It follows from Eq. S20 that under the conditions (a) and (b), the DOC function in the focal plane (far
field) becomes the same form with that [shown in Eq. S2] in the source plane, except for the coherence width is δf in-
stead of δ0. Finally, the conditions (a) and (b) are combined as the following form 

u > max

{√
200a2 − Ω2

ω0
,

√
10Ω
ω0

}
. (S21)

 

 Section 2: Image retrieval by Fienup’s phase retrieval (FPR) algorithms
Fienup1,2 proposed the phase retrieval algorithms, which can retrieve an image from the magnitude of the spatial Fouri-
er spectrum only by using a priori information of the object, such as being real or non-negative.
The basics of Fienup’s phase retrieval (FPR) algorithms are shown in Fig. S1. The algorithm starts with an initial guess
P1(x, y) of the object. When a low resolutions image of the object is available, this image is a logical choice for the initial
guess. Otherwise, a completely random pattern can be used to start the algorithm. The initial guess is entered into an al-
gorithm that performs the following four steps at its kth iteration 

step1 : μk (u, ν) = FT {Pk (x, y)} ,
step2 : θk (u, ν) = arg

{
μk (u, ν)

}
,

step3 : μk
′ (u, ν) =

∣∣μm∣∣ eiθk(u,ν),
step4 : Pk

′ (x, y) = IFT
{
μk

′ (u, ν)
}

, (S22)
where we use the information from the measurement of the module of the DOC in the third step. At this point the al-
gorithm requires real space constraints on the object. In our case, the object of P has to be real and positive. We define a
set Γ that contains all the points in Pk violating this constraint; in our case the points with a negative or complex value.
 

Pk (x, y)

Pk+1 (x, y)

μk (u, v) θk (u, v) |μm|

μk (u, v)=

FT

IFTConstraints

arg

′

′ Pk (x, y)′

u, v)eiθ
k
(|μ

m
|

Fig. S1 | Block diagram for an iterative phase recovery algorithm. FT: Fourier transform; arg: phase angle of μk(u,v); |μm|: module of the de-

gree of coherence of SMPCBs (measured from experiment or known in advance); IFT: inverse Fourier transform; Constraints: real space con-

straints to calculate Pk+1 out of Pk.
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There are multiple ways to implement this constraint into the algorithm. The first implementation is known as the ’Er-
ror-Reduction’ algorithm and sets 

Pk + 1 (x, y) =
{

Pk
′ (x, y) for (x, y) /∈ Γ ,

0 for (x, y) ∈ Γ .
(S23)

Another possible implementation is called the ‘Hybrid Input-Output’ algorithm and defines 

Pk + 1 (x, y) =
{

Pk
′ (x, y) for (x, y) /∈ Γ ,

Pk (x, y)− βPk
′ (x, y) for (x, y) ∈ Γ ,

(S24)

where β is a feedback parameter that control the convergence properties of the algorithm. When Pk+1(x, y) is calculated
it can be used as the starting point for the (k+1)th iteration.

The convergence of the algorithms is monitored by calculating the squared error Ek2 between the autocorrelation of
the retrieved image with the measured one 

E2
k =

[
|FT (Pk

′)| −
∣∣μm

∣∣]2 . (S25)

Consistently with the scheme already suggested in ref.3,4,  the best convergence is by starting with the Hybrid Input-
Output algorithm and gradually lowering β from 2 to 0 in steps of 0.05 and running 10 iteration per value of β. Then we
run 100 iterations with the Error-Reduction algorithm to reduce any residual noise from the image. 

 Section 3: Simulation approach for the Schell-model partially coherent beams with a cross-phase in turbulent
atmosphere
In our simulation, a Schell-model partially coherent beam source (SMPCBs) with a cross-phase (CP) is decomposed as a
series of random electric fields (each represents as a realization), with the help of the complex screen method. After that,
the random electric fields passing through the turbulent atmosphere is studied through the multi-phase screen method.
Hereto, we introduce the complex screen method and multi-phase screen method in part I and part II, respectively.

Part I. Representations of any genuine SMPCBs with a CP via the complex screen method
At present, there are many literatures reported on the representation of a genuine SMPCBs with a CP via the com-

plex screen method5,6. Here we briefly introduce this method, and more relevant details could be found in ref.5,6. For a
physically genuine SMPCBs with a CP, its CSD function can be alternatively represented as the following integral form 

W0 (r1, r2) = τ (r1) τ∗ (r2) μ0 (Δr) exp [iu (x1y1 − x2y2)]

= τn (r1) τ∗n (r2)
w
P (v1, v2)exp [−ik (v2 · r2 − v1 · r1)] d2v1d2v2 , (S26)

with 

τn (r) = τ (r) exp (iuxy) ,
 

P (v1, v2) =
√
P (v1)

√
P (v2)δ (v1 − v2) , (S27)

where τn(r) as the new complex function, determines the source intensity profile I=|τn(r)|2. P(v) as the power spectral
density is a non-negtive function, and δ denotes the Dirac function, which can be rewritten as 

δ (v1 − v2) = ⟨Cn (v1)Cn
∗ (v2)⟩ , (S28)

here Cn(v) (n = 1, 2, 3,...) denotes the random complex function whose probability density functions of amplitude and
phase of Cn(v) obey the negative exponent and uniform distribution, respectively. The angular bracket stands for the en-
semble average. We assume the field is statistically stationary. On substituting Eqs. S27 and S28 into S26, Eq. S26 are re-
written as 

W0 (r1, r2) = ⟨En0 (r1)E∗
n0 (r2)⟩ ≈

1
N

N∑
n0=1

En0 (r1)E∗
n0 (r2) , (S29)

with 

En0 (r) = τn (r)× Tn0 (r) , (S30)
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Tn0(r) = FT
[√

P (v)× Cn (v)
]

where En0(r)  denotes one realization of  random electric  fields. is the one random com-

plex screen with FT standing for the Fourier transform. Therefore, the generation of the SMPCBs can be treated as the
fully  coherent  portion [τn(r)]  illuminates  the random complex screens [T(r)]. Hence,  this  method is  named the com-
plex screen method.

Part II. Computational propagation model (multi-phase screen method) for the SMPCBs with a CP propagating in
turbulent atmosphere

In  the  above  part,  we  have  produced  the  random  electric  fields  via  the  complex  screen  method.  These  fields  are
treated as the source beam, who will pass the turbulent atmosphere. The multi-phase screen method is widely used for
numerically simulating the propagation of light beams through turbulent atmosphere7,8. We briefly outline here as well,
and more relevant details could be found in ref.7,8. In this method, the turbulence is modeled as a collection of thin ran-
dom phase screens with the desired turbulence statistics. Phase screens are placed along the propagation path at equal
intervals ∆z = z/NT, shown in Fig. S2. ∆z is the distance between two adjacent phase screens, z is the overall propagation
distance, and NT is the total number of screens.

Ē1

Ē1

Ēn

The scenario for simulating the propagation of SCPCBs with a CP in atmospheric turbulence is as follows. The incid-
ent electric field of the source E1(r1) propagates a distance ∆z in free space, and arrives at the first phase screen. Then,
the electric field turns to be (r2), which can be derived with the help of the Huygens-Fresnel principle. It will be modu-
lated by the random phase screen that represents the accumulated turbulence effect over the distance ∆z,  i.e., E2(r2) =

(r2)exp[iθ1(r2)], where θ1 is the accumulated phase fluctuations induced by the turbulence over the distance ∆z. The
following propagation steps just repeat the first propagation step, until the beam reaches the last phase screen. The in-
cident  electric  field  is  expressed as En+1(rn+1)  = (rn+1)exp[iθn(rn+1)].  Finally,  the  light  field  is  focused by a  collecting
lens and arrives at the detector in the receiver plane.

The method for synthesizing θn is similar to that for the synthesis of the complex screen described above but uses the
power  spectrum  Φn(κ)  of  the  turbulence-induced  refractive  index  fluctuations.  The  relationship  between  the  power
spectrum of the turbulence and the spectrum Φθ(κ) of the phase screen induced by turbulence is given by the following
formula, 

Φθ (κ) = 2πΔzk2Φn (κ) , (S31)

where k = 2π/λ denotes the wavenumber of a light wave with the wavelength λ; κ ≡ 2π(fx, fy) is the spatial frequency
vector. Following the same procedure for synthesis of the complex screen for partially coherent beams, Eq. (S31) is first

 

Part I

Part II

CS1 CS2 CS3
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z
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Fig. S2 | Computational propagation model (phase screen method) for a SMPCBs with a CP generating and propagating in turbulent at-
mosphere. Part I: Three typical realizations of the modulus of the complex screens (CSs). RPS: random phase screen.
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multiplied by a random complex function Cn(κ); we take a Fourier transform of the result. The real or imaginary parts
of  the  result  each  represent  a  valid  realization  of  the  turbulence  screen  phase,  e.g. θn(rn+1)  =  Re{FT[Cn(κ)×Φθ(κ)]},
where Re represents the real part.

In our simulation, the von Kármán spectrum is adopted as the power spectral density of turbulence, which reads as 

Φn (κ) = 0.33C2
n(κ2 + κ2

0)
−11/6exp(−κ2 + κ2m) , (S32)

C2
nwhere  is the structure constant of turbulence; κm =5.92l0 with l0 being the inner scale, and κ0 = 2π/L0 with L0 being

the outer scale. The turbulence and beam parameters are chosen to be l0 = 1.0 mm, L0 = 1.0 m, and λ = 532 nm. Further,
the propagation distance is set to be z = 1 m and the total of 5 phase screens are applied in our simulation.
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